
www.manaraa.com

Journal of Intelligent & Fuzzy Systems 27 (2014) 655–666
DOI:10.3233/IFS-131097
IOS Press

655

Smart experience engineering to support
collaborative design problems based on
constraints modelling1

Alejandro Cálad-Álvareza,∗, Ricardo Mejı́a-Gutiérreza, Cesar Maldonado Sanı́nb

and Edward Szczerbickic
aDesign Engineering Research Group, Universidad EAFIT, Medellı́n, Colombia
bSchool of Engineering, Newcastle University, ES Building, Newcastle, NSW, Australia
cGdansk University of Technology, Gdansk, Poland

Abstract. Engineering design is a knowledge intensive process. Experts’ experiences from different product life-cycle stages
play a key role in problem solving during design decision making by linking up knowledge to find better solutions for a specific
design problem. Different approaches have been used to support Collaborative and Concurrent Product Design, such as Constraint
Satisfaction Problem (CSP) modelling. Additionally, due to the need of capitalizing these experiences, the Set of Experience
Knowledge Structure (SOEKS) is used to store and manage experiences of decision making process. However it was necessary
to adapt the structure to property manage the constraints approach used in Engineering Design. This article presents a proposed
adaptation to SOEKS structure in order to be able to store and reuse CSP design experiences for further re-use and analysis of
multiple experiences. Finally, a case study is presented in order to show how the proposed approach can be used in the industrial
applications.

Keywords: Set of Experience Knowledge Structure, Concurrent engineering, Knowledge engineering, Knowledge representation,
Artificial intelligence, Constraint satisfaction

1. Introduction

Specialization of companies in specific disciplines
have fostered new ways of work based on responsi-
bilities distribution according to companies’ strengths

1This document is a collaborative effort between the Design
Engineering Research Group (GRID) from Universidad EAFIT
(Colombia) and the Knowledge Engineering Research Team (KERT)
from The University of Newcastle (Australia).

∗Corresponding author. Alejandro Cálad-Álvarez, Design Engi-
neering Research Group, Universidad EAFIT, Engineering Building,
Cra. 49 No. 7 Sur 50 050022, Medellı́n, Colombia. Tel.:
+574 2629500/Ext. 9712; Fax: +574 2664284; E-mail: acaladal@
eafit.edu.co.

and experience. Due to this, nowadays complex projects
have their partners distributed in different places all
around the world. Under this environment, distributed
teams are built to work together, finding the best inte-
grated solution to a specific problem. This approach has
important impact in early design stages of new products.
Concepts like Concurrent and Distributed Engineering
tackled this issue in a general way, arousing interest in
both, research and industrial sectors.

An important concept, closely associated with Con-
current Engineering (CE), is the Product Life Cycle
(PLC) which is more and more relevant to knowledge
capture and to evaluate the impact of decision making

1064-1246/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

www.manaraa.com

656 A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems

about engineering changes. PLC considers all relevant
elements related to the different life cycle stages such as
design, manufacture, distribution, use, maintenance and
disposal of a product. Taking into account those stages
of the PLC become a key issue to design a product.
Also, as designers’ decisions affect other departments,
such as manufacture, storage, transport, commercial-
ization, etc. the design stage must include constraints of
all subsequent stages in order to avoid future problems
in downstream lifecycle stages.

Therefore, it is necessary to include experts’ knowl-
edge from different lifecycle stages (preferably from
all of them) and to establish relationships among them,
looking to ensure completeness of the design review
by linking up their knowledge to find better solutions
for a specific design problem. This way of working
is known as CE. However, in a collaborative environ-
ment, it is difficult to put together knowledge of diverse
nature by integrating constraints of different lifecycle
stages into a single design proposal that satisfies all
of them. Notwithstanding, different approaches have
been developed to support Collaborative and Concur-
rent Product Design [15, 16, 20, 26]. One of them
is Constraint Satisfaction Problem (CSP) which has
received much interest as it allow designers, not only to
model a design problem in terms of dimensional issues,
but also in terms of configuration or behavioural analy-
sis. It permits defining discrete and continuous variables
associated in varied of constraints that are represented
in mathematical expressions. However, CSP also allow
designers to include in the same model configuration
problems by defining symbolic variables, which are
linked by logic constraints.

On the other hand, design is all about decisions, like
defining the shape (weight, volume and bulk), the best
material for the shape selected, the color, some physi-
cal properties, among others. Designers fix the values
of these attributes based on constraints from experts,
derived from previous, similar, or equal experiences.
Using CSP, in early design stages, as a tool for reducing
the solutions space (which corresponds to the solution
set of product design proposals) is also part of the
decision making process in engineering design. The
experience necessary to define the components of a
CSP model can be called technical or domain-specific
knowledge. Therefore, knowledge in a CE environment
is an important asset that can be collected, stored and
re-used as experiences to improve the design process.

Although Knowledge Representation (KR) has been
a topic of studies and different proposals have been
made, there is not a unique consensus about one univer-

sal representation that can store knowledge for different
domains. This is basically due to the fundamentals of
the problem from one domain to another, also because
the content and the form of the proposed representation
in each case [24]. Among all proposals to represent
knowledge, there is a knowledge structure that stores
and manages experience for decision making processes.
It is called Set of Experience Knowledge Structure
(SOEKS). As designers make decisions during the def-
inition of a product, SOEKS can be used to represent
and to store designers’ knowledge in a predefined struc-
ture to re-use and help designers while taking decisions
regarding the components of a CSP model in the con-
ceptual design stage of a product.

Having represented and stored experts’ knowledge,
it is possible to make inferences and to help designers
during CSP modelling process by suggesting variables
and/or constraints based on the component’s charac-
teristics or even, the problem context. Once having
represented the components of a CSP model under
SOEKS’ structure, it is also possible to represent a
refined and approved CSP model as whole SOEKS and,
by this, store the set of the experiences of the complete
process.

This paper presents a knowledge modelling approach
for engineering design problems based on CSP and
using SOEKS as a Knowledge Representation Struc-
ture. This way of design knowledge representation
allows to share and distribute experiences for enhanc-
ing the definition of CSP models applied to engineering
design. The structure of the paper is divided in 5 sec-
tions. In Section 2, a literature review about CSP and
Knowledge Representation Trends are introduced. Sec-
tion 3 presents the interpretation of CSP syntax, the
aggregation of new structures to SOEKS, a change in
how to interpret attributes and finally a change in the
SOEKS structure. In Section 4 a Case Study is presented
and in Section 5, the conclusions and further research
are addressed.

2. Literature review

2.1. CSP as knowledge representation in
engineering design

For the last years CSP has been commonly used in
Engineering Design as a way for representing knowl-
edge. As many design problems can be formulated
under this concept, its use grew incrementally to support
this particular engineering application [1, 2, 10].

www.manaraa.com

A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems 657

The constraints used during a design process include
heuristics, tables, guidelines or computer simulations,
as well as machine limitations, packaging limits,
among others constraints issued from different experts
throughout the PLC. A majority of those limitations
can be expressed as mathematical constraints [3] and
therefore they may be used in these kind of numerical
approaches.

That is why technical knowledge in Engineering
Design may be modelled as a set of mathematical rela-
tions among a set of variables. Those variables may
have a finite set of possible values to take. Therefore,
a modelling process exists to represent that knowl-
edge in terms of P (V, D, C)1 where V is the set of
n design variables {V1, V2, . . . , Vn}, D is the set of n

domains2 of each variable {D1, D2, . . . , Dn} and C is
the set of p relations among variables, called constraints
{C1, C2, . . . , Cp} [13].

There is evidence in the literature that constraint-
based methods are widely used to model Engineering
Design problems [1, 7–9, 17]. The key point is that
this knowledge, issued from expert’s experience, should
be properly elicitated, structured and stored in order to
be reused to enrich future product developments. The
issue increases by coordinating efforts in distributed and
heterogeneous knowledge modelling derived from CE
approaches. Other proposal have been made to collab-
orative model the design process in form of CSP and an
algorithm that considers multiple actors was proposed
to as many integrate product lifecycle constraint will be
possible [21].

In previous works a knowledge modelling structure
was proposed to represent and store CSP variables in for
knowledge design [25]. The stored knowledge was used
by a Multi-Agent System to make a pre-validation of
the variables in the model by comparing them using the
attributes define. The agents reuse the knowledge cap-
tured to suggest similar variables to the experts in order
to accelerate the definition process of new components
in the model.

In spite all the proposals made to represent engi-
neering design knowledge using CSP or constraint
programming, there is any proposal using a standard
representation that provides the means to transport,
reuse and communicate the knowledge.

1From the triple 〈X, D, C〉 definition of Constraint Satisfaction
Problem (CSP) theory that defines CSP as mathematical problems
composed by as a set of objects whose state must satisfy a number of
constraints.

2Set of possible values that a variable Vi can take.

2.2. Set of Experience Knowledge Structure

Knowledge have played a differentiator role in the
human history. Nowadays, knowledge is probably the
most important asset of civilizations and companies and
its value is appreciated for nation’s in military and eco-
nomic aspects as well as for companies for creating
competitive advantage. This fact has impulsed the world
to turn into a knowledge society, making necessary the
development of technologies to manage and control all
forms of knowledge because this technology can be
consider the platform the succeed.

Due to this, Knowledge-based Systems were cre-
ated based on inferences mechanism and formalisms
that were not more than a set of rules. This rules
were elicitated from the expert by interviews and by
the understanding of the activity to be modelled [19].
Then, by a transfer process, this knowledge was imple-
mented in a production rules that were executed by an
Interpreter. This approaches were not successful due
to representing knowledge by production rules did not
support adequate representation of different types of
knowledge [27].

After this attempt of knowledge representation with
rules, a new brand of Artificial Intelligence emerged,
Knowledge Engineering (KE). Feigenbaum defines KE
as “an engineering discipline that involves integrating
knowledge into computer systems in order to solve
complex problems normally requiring a high level of
human expertise” [11]. Since the beginning, the engi-
neers working in these topics developed principles,
methods and techniques to identification, capturing and
representation of knowledge [4, 14, 18, 23] among
others.

Other technologies like Knowledge Management
Systems (KMS), Data Mining, among others, were also
developed for different proposals and for working with
different kind of knowledge. Each of them work with
decision-making in some way but they do not have
structure knowledge of the formal decision events they
participate in. Set of Experience Knowledge Structure
(SOEKS) has been developed to keep formal deci-
sion events in an explicit way [6]. SOEKS is a model
that structure knowledge based on four basic compo-
nents that surround decision-making events: variables
V, functions F, constraints C, and rules R.

One of the first ways to represent knowledge was
variables, this means, using an attribute-value relation-
ship. SOEKS uses variables as a root for its structure
because variables are the source of the other three com-
ponents. Functions, describes associations between a

www.manaraa.com

658 A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems

dependent variable and a set of input variables and
are used in SOEKS for established links among vari-
ables and to construct optimal states or representing
multi-objective goals when taking a decision. The third
component, constraint, are another way of relationship
among the variables but they have different purpose
than the functions. Constraints in SOEKS acts a lim-
itation of the possibilities, restricting the solutions in
a decision problem. Finally, the rules, are also rela-
tionships between the variables expressed in the form
IF-THEN-ELSE.

The combination of the four elements of SOEKS
gives uniqueness to each result, making possible to
represent formal decision events. The possibility offer
by SOEKS to be represented using multi-platform
technologies like XML makes this approach excellent
for exchanging experiences across multiple platforms
and make it appropriate to exchange and reuse design
knowledge in a concurrent environment.

3. SOEKS based collaborative CSP definition

SOEKS was proposed as a knowledge representation
to keep decision events in an explicit way [6]. As men-
tioned above, SOEKS is composed by four components:
Variables V, Functions F, Constraints C, and Rules R.
An experience can be represented by a combination of
all these components, likewise, an experience might be
represented uniquely by a set of values of one of the
components, e.g. a set of six variables V represents a
movie in a Web Data Mining Application [22].

In previous work a knowledge representation struc-
ture was defined for representing engineering design
knowledge modelling, by a tuple Variables V, Domains
D and Constraints C [25]. The proposal was based on
the idea that a design problem can be represented as
a CSP model in order to be treated by an inference
engine to obtain a set of possible solutions. The def-
inition of each element of the model, is an explicit
representation of the knowledge from the expert that
defined it. This approach includes a definition of the
variables’ attributes regarding, not only the character-
istics that defined the variable itself, but also includes
some attributes that are necessary to define a CSP model
in CON’FLEX3 syntax and in collaborative and concur-
rent environments. The definition of constraints is based
in how CON’FLEX categorizes it.

3A solver of Constraint Satisfaction Problems. Source:
http://carlit.toulouse.inra.fr/conflex/ Last accessed: February 22nd
2013.

Both approaches, SOEKS and CSP, agree on the
definition of variables and constraints as elements
of knowledge but a deeper analysis of the Vari-
ables’ attributes and Constraints types show that these
approaches have some differences that difficult the
direct representation of CSP knowledge into SOEKS
structure. This section presents the differences between
both approaches and the modifications that had to be
made to be able to use a generic knowledge represen-
tation for supporting the concurrent definition of CSP
models for product design.

3.1. Variable representation

Conceptually, SOEKS interprets variables as the
representation of the current state of the external envi-
ronment and which can be modified by an action that
changes the value of those variables and therefore, pro-
ducing a new state [5, p. 42]. Thus, variables are defined
as an object with eleven attributes; six of them are
mandatory while the other five are optional see [5,
p. 83]. The XML representation of a variable can be
seen in Figure 1. The attributes that describes the vari-
able are:(<var_name>) for the name of the variable;
(<var_type>), the type of variable: Numerical or
Categorical; the cause value (<var_cvalue>), the
value of the variable in the first state, before being
optimized;(<var_evalue>) representing the effect
value, which is the value of the variable after being
optimized; (<unit>), what represents the values; a
Boolean (<internal>) to represent if the value
is internal or external. In addition of these attributes,
variables also include optional attributes necessary
in the processes of similarity, uncertainly, imprecise-
ness, or incompleteness measures. Those attributes
are (<weight>), for measuring the weight of the
variables;(<priority>), to indicate the priority;
(<l_range>) lower range and (<u_range>),
upper range, to define the values that the variables can
take; and (<categories>), that can be more than
one and are used when the variable is categorical.

According to the CON’FLEX syntax, a variable can
be of three types: Integer, Real and Symbolic. Accord-
ing to the type of variable, there are different attributes
associated with it. Thus, Symbolic variable has the
following attributes: Name, which has to be unique;
Domain of the variable, which is a list with the sym-
bolic values that the variable can take; and an optional
value, theDegree of membership, to indicate the
degree of membership of the value to the inference
engine, by default this value is 1.

www.manaraa.com

A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems 659

Fig. 1. Tree of variables of a SOEKS-XML configuration [5].

Fig. 2. Class diagram for design variable.

The Integer variable also has a Name; that has to be
unique; an integer Domain that can be of three types:
a list of integer values; a range of values limited by
the upper and lower numbers; and a combination them.
An Integer variable also has aDegree of member-
ship (between 0 and 1) that can be assigned to each
of the values of the domain.

In CSP Real variables are declared using three
attributes: Name; Step, which represents the increas-
ing of the variable per iteration (0.1 by default); and
finallyDomain, for which a real variable can be defined
in four ways: As a closed interval [<a>,]

and the support of the fuzzy interval of height 1;
As a closed interval [<a>, , (<d>)] with
the interval [a, b] and the height d between 0
and 1 for the last alpha-cut; As a closed interval
[<S1>, <n1>, <n2>, <s2>] with the number
[s1, s2] that represents the support, and the core
of the fuzzy interval [n1, n2] with default height
1; and a closed interval [<s1>,<n1>,<n2>,<s2>,
(<d>)] with support [s1, s2], the highest alpha-
cut [n1, n2] and the height d, between 0 and 1.

In spite of the similarities that a first glance may
exist between the variables in CON’FLEX and the
variables in SOEKS, there are some major differences
that prevent to directly use SOEKS for representing
CON’FLEX’s variables. The main difference is the
number of attributes needed in CON’FLEX to represent
a variable and the number of attributes that SOEKS has.
In addition, some of the attributes that apparently are
common to both proposals are missing some concep-
tual aspects necessary to represents all the attributes of
a variable for CON’FLEX.

Therefore an extension of the variable is proposed
to include the attributes that are not in the definition of
Variable in SOEKS. The new variable is called Design
Variable (DV) and is an Extension of the class Vari-
able proposed in [5, p. 42-46]. The new class has the
attributes shown in the Fig. 2.
Discipline and lifecycleStage are

attributes needed to identify variables while experts
are defining the CSP model in a collaborative and
concurrent environment. Discipline attribute
refers to the discipline in which the variable is used, i.e.
Shopping, Geometric, etc. and lifecycleStage
refers to which of the product lifecycle stages the
variable is used. Domain has the values that the
variable can take and its format depends on the
type of the variable. The domain logic is validated
in the code in order to make easily the definition of
variables. The indexVarClassification allows
the classification of the variable in four categories:
Morphological, Criterion, Physical, and Technical.

Fig. 3. Tree of constraint of a SOEKS-XML configuration [5].

www.manaraa.com

660 A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems

Fig. 4. Tree of factor of the SOEKS-XML configuration [5].

The attribute measureParameter is used to rep-
resent the measure parameter of the variable, that can
be: length, mass, etc. And finally, a DV has two names,
the one in the father class, varName, which it is
used to represent the variable in a technical way. This
name specifies the type of variable and a consecutive
number to identify it. The second name, variable-
Name which is used to present the variable to the
experts with a name easily to remember and that can
be associated with the function of the variable in the
model.

By extending SOEKS’s variable it is possible to
have a representation for the basic design knowledge.
This representation, is an extended version that not
only includes the normal attributes of the variables
but also the attributes of the design variable. With
these new attributes, it will be feasible to make new
inferences about the CSP model and even about the
experiences of the experts during the definition of the
models.

3.2. Constraint representation

An initial look to the SOEKS and its structures
suggests that Constraints for a CSP model can be rep-
resented using the Constraint structure of SOEKS.
Constraints in SOEKS are expressed by four ele-
ments: factor, sym, value, and optional value: weight
(see Fig. 3).

In a constraint expression the element factor have
to be at least one time and it is expressed as shown in
Fig. 4.

Factors are constituted by two types of factors:
(<assoactor>) and (<simfactor>). The asso-
factor is a structure to represents associated factors
and contains the following elements: parenthesis
(<lpar>, <rpar>); two optional elements: the
operator (<oper>) and the potency (<poten>);
and terms (<term>). term is an structure itself and
contains: (<oper>), coefficient (<coef>), vari-
able (<variable>) and (<poten>). simfactor

www.manaraa.com

A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems 661

represents single factors and therefore it only includes
terms.

The structure proposed in SOEKS for Constraint
its a good foundation to represent CSP’s constraint
but, due to the syntax and the conceptual definition of
this element in CON’FLEX, not all of the attributes
and aspects are cover with this approach. Therefore, it
is necessary to use not only the Constraint structure
but other structures defined in SOEKS to be able
to fully represent all types of Constraints and their
attributes. Furthermore, it is also necessary to define a
conceptual way to integrate the new form to represent
constraints into a single SOEKS. This allow the
representation of design experiences of the experts
and also, will permit making inferences with this
knowledge. As a result, the three principals constraints
in CON’FLEX: Extension, Intention and Conditional,
where represented following the syntax of
CON’FLEX but based on different SOEKS’s
structures.

3.2.1. Extension constraints
In CON’FLEX Extension constraint are used to list

explicitly and exhaustively all the combination of pos-
sible values of set of variables. This kind of constraint
is only defined when the expert is uncertain about some
aspects of the design or when there are variables that
are related.

An extension constraint can be seen as collection of
rules where the condition is the relationship between
variables, and consequence is the degree of compat-
ibility of the tuple of that relationship (between 0 -
1). According to this, the best SOEKS’s structure to
represent each relationship is rule (see [5, p. 87-88]).

To represent the extension constraint a new class
was defined, ExtensionConstraint. The class
extends the RuleSet Class, that is a SOEKS’s struc-
ture which has as attribute a Vector of Rule.
Each rule is composed by two mandatory elements:
(<join>) to represents the conditions; and the sec-
ond one, (<consequence>), that corresponds to
the consequence. The other two are optional elements
necessaries to make inferences process in SOEKS:
(<confidence>), to offer certainty on action of the
rule, and (<weight>). In turn, each of the manda-
tory elements has their own elements, (<join>) has
(<jnt>) to allow the occurrence of more than one
(<join>) in the rule by connecting them with a logic
connector (i.e. AND / OR); and (<condition>),
that is composed by (<factor>); (<sym>);
(<value>); (<variable>); and (<weight>)

to represent the importance of the rule among the set of
rules it belongs. Consequence (<consequence>),
has four more elements: (<variable>); (<sym>);
(<value>); and (<variable>).

Additionally it is necessary to define three more
attributes in the Class ExtensionConstraint
to be able to translate it into a CSP model.
These attributes are: name, which is the name
of the Extension Constraint to be presented to the
user; the representation symbol of the constraint is
representationSymbol and the priory (Impor-
tance) of the constraint in the model, by default 1.

To save an extension constraint into a SOEKS object,
each rule of the constraint is store as a rule and its
name have to follow the next structure:

constraintName-repSymbol-i.

Where constraintName is the name given to the
constraint, the representation symbol of the variable is
the model is repSymbol, and i is the position of the
rule in the Vector of rules.

With this convention to represent the name, it
is possible to go from Extension Constraint objects
to SOEKS’s objects and from SOEKS to Extension
Constraint without loosing information or the capa-
bilities of SOEKS. Also, it is possible to represent
Extension constraint as experience in SOEKS.

3.2.2. Intention constraints
Intention constraints in CON’FLEX are relation-

ships between the variables declared in the model. In
CON’FLEX an intention constraint has to be define as:

<name> [(<priority>)] , <equation>

Where name is the representation symbol used in
the model to identify the constraint. By convention
this name is usually defined as the initial letter of
the type of constraint together with a consecutive
number separated by a dash i.e. CI-1. priority
defines the importance of the constraint (1 per default)
and equation which is the functional relationship
following the form: <exp><binop><exp> where:
<binop> is the binary operator in the equation that can
be: =, ≤, <, ≥, >, /= . The element <exp> includes
any type of variable (previously defined in the model),
arithmetic operators: +, −, ∗, /, xy (integer power),
∗∗(real power in �) and

√
x. i.e. x2 − 3x + 2/y ≤

−0.5.

www.manaraa.com

662 A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems

Fig. 5. Tree of rules of the SOEKS-XML configuration [5].

To be able to represent an intention constraint in
SOEKS the Class IntentionConstraint was
defined. This Class extends the Constraint Class
(see [5, p. 87-89]) due to it has a similar structure
than the defined in CON’FLEX. The left side of the
equation is represented in SOEKS by the element
factor, <binop> is <sym>, the weight attribute
is the equivalent to priority, and the expression of
right side of the equation is the element value. To be
able to make this transformation and represent the expe-
rience of defining an Intention Constraint in a SOEKS,
it is necessary to equalize the equation to zero. By
doing this, all of the variables will be in the left side of
the equation and the right side will have the value.
Another reason to extends theConstraintClass was
the missing of one attribute needed it the definition of
CSP models, the representationSymbol.

With this approach it is possible to include an
intention constraint as an element of the experience
represented in SOEKS and reuse by making inferences
based on those experiences, tutoring experts by giving
them clues and help while defining a new CSP model,
among others.

3.2.3. Conditional constraints
A Conditional Constraint has two sets of constraints:

the premise and the conclusion. Both are composite by
intention and extension constraints but for experimental
purposes all the extensions will be transform into inten-

tion constraints. The syntax in CON’FLEX to represent
this kind of constraint is:

\cc : <name>
\if

...
<PC_i>
...

\then
...
<CC_j>
...

;

Where <name> is the name of the Conditional Con-
straint and by convention has the form: CC#, with #
representing a consecutive number that differentiate
one constraint from another. The <PC_i> in the \if
clause is the elementiof the set of premises, in the other
hand <CC_j> in the \else clause, is the j element
of the conclusion constraints.

To be able to use SOEKS’ structures it was neces-
sary to modify the SOEKS source code and changed
the Consequence Class. Originally a rule could be
represented in XML as seen in Fig. 5.

Due to conclusion is a set of Intention Con-
straints, an attribute of the Class had to be changed.
lhsVariable, which is Variable type, was
changed by a Factor type attribute to able to include

www.manaraa.com

A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems 663

intention constraints into the conclusion. With this
change, it is possible to presents Conditional Con-
straints in SOEKS and therefore, create a SOEKS
object with the experience of defining the Conditional
Constraint by adding rules that can have conclusions
composite by intention constraints.

4. Case study

This section describes a simplification of the engi-
neering design process used by a company specialized
in designing and building polymerization plants. The
polymerization process is classified as part of the AEC

Fig. 6. Mixer kinematic diagram.

Fig. 7. Mixer S1/S2 morphology analysis.

Fig. 8. Mixer S1/S2 kinematic analysis.

(Architecture, Engineering and Construction) sector,
which are composed of several subsystems such as pip-
ing, civil engineering, specialized equipment (pumps,
mixers, etc.) design and selection. The company defines
together with the client a set of functional require-
ments for a plant construction. Each plant functionality
usually changes depending on different factors such
as: type of polymer to mix, way of mixing, chemi-
cal reactions experimented during the mixing process,
temperature reached by the mix, security regulations,
pressure supported by the reactors, minimum and max-
imum volume of mix, among others. Most of the
expended time during the design of the whole plant
is dedicated to analyse and to evaluate which is the best
design for the pre-reactors and reactors.

The object of study in this article is one of the
most common components: The mixer. The engineering
problem design problem is the design and dimension-
ing of an industrial mixer. The literature has presented
a simplification of this analysis as the case presented
by Gelle [12]. This generalization is combined with
some factors used by the company during their design
process. This case enables to validate that the changes
proposed to SOEKS and the conceptual interpretation
given to some of its structures allows to represent design
experiences in terms of variables, constraints and rules
regardless if rules and constraints link discrete, contin-
uous or symbolic variables.

www.manaraa.com

664 A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems

As part of the engineering process to design indus-
trial mixers, some general concepts will be introduced.
There are two types of components: the “mixer”, which
describes the product itself, and “the type of mixture”
which determines the requirements according to the
type of polymer to mix. Additionally, industrial mix-
ers can be classified into three types: reactor, storage
or conventional4. Similarly, depending on the combi-
nation of phases (solid, liquid or gas) from the mixed
product(s), the type of mixture can be defined as: sus-
pension, mixing, dispersion or moving.

It has been presented so far the general architec-
ture of the knowledge model in terms of variables.
Implicitly, the possible values that a variable can take
were discussed. It is therefore introduced the concept
of “domain”, which is fundamental to a CSP model
definition. For the type of mixture case, the variable
was named VS1_MT_subtype and its corresponding
domain will be as Equation 1.

VS1 MT subtype = {suspension, mixing,

dispersion, moving} (1)

In an equivalent manner, the engineering process
is developed to identify more variables and relations
among them (to find constraints). One of the main types
of constraints are those from the morphological analy-
sis, as well as from product behaviour (e.g. dynamics).

According to Figs. 6, 7 and 8, each component of the
mixer, represented as a rigid body in the kinematic dia-
gram, is analysed in order to bring out the first geometric
constraints.

From these analysis, it is possible to define more vari-
ables. Some examples are presented in Equation 2. The
set of domains for these variables are defined as real
values.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D = < VR3_V_d > Vessel diameter

H = < VR4_V_h > Vessel height

Td = < VR6_I_d > Impeller diameter

w = < VR7_I_rps > Impeller angular speed

(2)
In summary, the model has 15 variables between

symbolic and real, that are related by 7 constraints.
The mixer was modelled in 4 components and vari-
ables were grouped in those four elements of the
mixer: the Mix Tasks; the Vessel configuration: Vol-
ume, Diameter and Height; the types of impellers and
their physical parameters as well as Impeller’s RPS and

4This particular case will be simplified to the conventional mixer.

Fig. 9. Transformation of symbolic variable from CSP to SOEKS
structure.

Fig. 10. Transformation of real variable from CSP to SOEKS.

power; finally there is a variable with the power of the
Engine.

Similarly, technical experiences can be modelled
as mathematical expressions to obtain constraints and
reused them in similar projects. A clear example for
this can be the Volume of the Vessel as well as the
power needed by the motor to activate the mixer. Con-
sequently, the knowledge of the experts are related by
the definition of seven Constraints. The first constraint
in the model limits the vessel volume by relating the
vessel’s height and diameter with the constraint π. The
second constraint links the type of Impeller with its
angle; the next four constraints relate the Impeller type

www.manaraa.com

A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems 665

Fig. 11. Transformation of intention constraint from CSP to SOEKS.

with its diameter and a power constant, which is used
in the last constraint to obtain the Power.

Based on the previous details, the design knowledge
was modelled under the CSP approach and stored under
the modified SOEKS structure, in order to be stored
and reused in further applications. Figures 9, 10 and 11
shows an example of a symbolic variable, real variable
and a intention constraint, respectively.

5. Conclusions

In this paper the importance of Constraint Satis-
faction Problems (CSP) and Constraint programming
for linking up knowledge to find better solutions for a
design problem was presented. Additionally, the defi-
nition and structure of CON’FLEX was introduced. In
the article there was also presented the importance of
having a well defined knowledge representation struc-
ture in different Artificial Intelligence topics and due to
that, a brief introduction to SOEKS was given. SOEKS
has been developed to keep formal decisions events in
an explicit way by the definition of four components:
Variables, Functions, Constraints and Rules. This com-
ponents can be combined to produce unique results
and also can be represented using XML. A compari-

son between the attributes of CON’FLEX and SOEKS
was done and based on the differences, an extended
representation structure was proposed. The proposal
modifies some structures of SOEKS and makes differ-
ent interpretations of some of its attributes to be able to
reap the advantages of represent Product Design knowl-
edge as a SOEKS. Finally a case study is presented in
order to validate the proposed approach.

Having the design knowledge represented in a tech-
nology that allows the transportation and re-utilization
of knowledge across different applications, lets us think
about new applications of the represented knowledge.
Further research have to be done to create inferences
systems for the design experiences represented and
stored in SOEKS.

Acknowledgements

This work was supported by Universidad EAFIT. The
authors appreciate the partial financial support from the
Medellin City (Colombia) through the “Enlazamundos”
program that was granted for supporting an exchange
period in Australia to develop part of this project. We are
also grateful to the University of Newcastle, Australia
for opening its doors to make possible this collaborative
work.

References

[1] A.J. Qureshi, J.-Y. Dantan, J. Bruyere and R. Bigot,
Set based robust design of mechanical systems using
the quantifier constraint satisfaction algorithm, Engineer-
ing Applications of Artificial Intelligence 23(7) (2010),
1173–1186.

[2] A. Thornton and A. Johnson, CADET: A software support tool
for constraint processes in embodiment design, Research in
Engineering Design 8 (1996), 1–13.

[3] A.C. Thornton, The use of constraint-based design knowledge
to improve the search for feasible designs, Engineering Appli-
cations of Artificial Intelligence 9(4) (1996), 393–402.

[4] B.J. Wielinga, A.T. Schreiber and J.A. Breuker, KADS: A
modelling approach to knowledge engineering, Knowledge
acquisition 4(1) (1992), 5–53.

[5] C. Maldonado Sanin, Smart knowledge management system,
PhD Thesis, Faculty of Engineering and Built Environment -
School of Mechanical Engineering, The University of Newcas-
tle, Newcastle, Australia, 2007.

[6] C. Sanin and E. Szczerbicki, Experience-based knowledge
representation: SOEKS, Cybernetics and Systems: An Interna-
tional Journal 40(2) (2009), 99–122.

[7] D. Scaravetti, J.-P. Nadeau, J. Pailhes and P. Sebastian, Struc-
turing of embodiment design problem based on the product
lifecycle, International Journal of Product Development 2(172)
(2005), 47–70.

www.manaraa.com

666 A. Cálad-Álvarez et al. / Smart experience engineering to support collaborative design problems

[8] D. Scaravetti, J. Pailhes, J.-P. Nadeau and P. Sebastian, Aided
decision-making for an embodiment design problem, in: A.
Bramley, D. Bris- saud, D. Coutellier, C. McMahon (Eds.),
Advances in Integrated Design and Manufacturing in Mechan-
ical Engineering, Springer Netherlands, (2005), pp. 159–172.

[9] D. Yang and M. Dong, A constraint satisfaction approach to
resolving product configuration conflicts, Advanced Engineer-
ing Informatics 26(3) (2012), 592–602.

[10] D. Yang, M. Dong and X.-K. Chang, A dynamic constraint satis-
faction approach for configuring structural products under mass
customization, Engineering Applications of Artificial Intelli-
gence 25(8) (2012), 1723–1737.

[11] E.A. Feigenbaum and P. McCorduck, The fifth generation: Arti-
ficial intelligence and Japan’s computer challenge to the world,
Addison-Wesley Longman Publishing Co., Inc., 1983.

[12] E. Gelle, On the generation of locally consistent solution spaces
in mixed dynamic constraint problems, Ph. D. Thesis, Ecole
Polytechnique Federale de Lausanne, Switzerland, 1998.

[13] E. Tsang, Foundations of Constraint Satisfaction, Vol. 289,
Academic Pr, 1993.

[14] G. Schreiber, B. Wielinga, R. de Hoog, H. Akkermans and W.
Van de Velde, CommonKADS: A comprehensive methodology
for KBS development, IEEE expert 9(6) (1994), 28–37.

[15] J.A. Harding, A knowledge representation model to support con-
current engineering team working, Phd thesis, mechanical and
manufacturing engineering, Loughborough University, 1996.

[16] J.G. McGuire, D.R. Kuokka, J.C. Weber, J.M. Tenenbaum, T.R.
Gruber and G.R. Olsen, SHADE: Technology for knowledge-
based collaborative engineering, Concurrent Engineering 1(3)
(1993), 137–146.

[17] M. Aldanondo, E. Vareilles, K. HadjHamou and P. Gaborit,
Aiding design with constraints: An extension of quad trees
in order to deal with piecewise functions, International Jour-
nal of Computer Integrated Manufacturing 21(4) (2008), 353–
365.

[18] M. Ester, H.-P. Kriegel and X. Xu, Knowledge discovery in
large spatial databases: Focusing techniques for efficient class

identification, in: Advances in Spatial Databases, Springer,
(1995), pp. 67–82.

[19] M. Musen, An Overview of Knowledge Acquisition, in: J.-M.
David, J.-P. Krivine, R. Simmons (Eds.), Second Gener-
ation Expert Systems, Springer Berlin Heidelberg, (1993),
pp. 405–427.

[20] M.R. Cutkosky, R.S. Engelmore, R.E. Fikes, M.R. Genesereth,
T.R. Gruber, W.S. Mark, J.M. Tenenbaum and J.C. Weber,
PACT: An experiment in integrating concurrent engineering
systems, Computer 26(1) (1993), 28–37.

[21] P.-A. Yvars, A CSP approach for the network of product
lifecycle constraints consistency in a collaborative design con-
text, Engineering Applications of Artificial Intelligence 22(6)
(2009), 961–970.

[22] P. Wang, C. Sanin and E. Szczerbicki, Application of decisional
DNA in web data mining, Knowledge-Based and Intelligent
Information and Engineering Systems 6882 (2011), 631–639.

[23] Q.Y. Fu, Y.P. Chui and M.G. Helander, Knowledge identifica-
tion and management in product design, Journal of Knowledge
Management 10(6) (2006), 50–63.

[24] R. Davis, H. Shrobe and P. Szolovits, What is a knowledge
representation? AI magazine 14(1) (1993), 17.

[25] R. Mejı́a-Gutierrez, A. Cálad-Álvarez and S. Ruiz-Arenas,
A Multi-Agent Approach for Engineering Design Knowledge
Modelling, in: Knowledge-Based and Intelligent Information
and Engineering Systems, Part II, Vol. 6882 of Lecture Notes
in Computer Science, A. Koenig, A. Dengel, K. Hinkelmann, K.
Kise, R.J. Howlett, L.C. Jain, (Eds.), Kaiserslautern, Germany,
(2011), pp. 601–610.

[26] T. Luz, E. Loup-Escande, H. Christofol and S. Richir, The
collaborative product design and help to decision mak-
ing: Interactive mind-mapping, in: A. Bernard (Ed.), Global
Product Development, Springer Berlin Heidelberg, (2011),
pp. 237–244.

[27] W.J. Clancey, The epistemology of a rule-based expert system a
framework for explanation, Artificial Intelligence 20(3) (1983),
215–251.

www.manaraa.com

Copyright of Journal of Intelligent & Fuzzy Systems is the property of IOS Press and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

